Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.14.512296

ABSTRACT

SARS-CoV-2 spike protein (S) is structurally dynamic and has been observed by cryo-EM to adopt a variety of prefusion conformations that can be categorized as locked, closed and open. The locked conformations feature tightly packed trimers with structural elements incompatible with RBD in "up" position. For SARS-CoV-2 S, it has been shown that the locked conformations are transient under neutral pH. Probably due to their transience, locked conformations remain largely uncharacterized for SARS-CoV-1 S. Intriguingly, locked conformations were the only conformations captured for S proteins of bat and pangolin origin SARS-related coronaviruses. In this study, we introduced x1, x2, and x3 disulfides into SARS-CoV-1 S. Some of these disulfides have been shown to preserve rare locked conformations when introduced to SARS-CoV-2 S. Introduction of these disulfides allowed us to image a variety of locked and other rare conformations for SARS-CoV-1 S by cryo-EM. We identified bound cofactors and structural features that are associated with SARS-CoV-1 S locked conformations. We compare newly determined structures to other available spike structures of Sarbecoviruses to identify conserved features and discuss their possible functions.


Subject(s)
Severe Acute Respiratory Syndrome
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1381122.v1

ABSTRACT

Population antibody response is believed to be important in selection of new variant viruses. We identified that SARS-CoV-2 infections elicit a population immune response mediated by a lineage of VH1-69 germline antibodies. The representative antibody R1-32 targets a novel semi-cryptic epitope defining a new class of RBD targeting antibodies. Binding to this non-ACE2 competing epitope leading to spike destruction impairing virus entry. Based on epitope location, neutralization mechanism and analysis of antibody binding to spike variants we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of this population antibody response. These substitutions, including L452R found in the Delta variant, disrupt interaction mediated by the VH1-69 specific hydrophobic HCDR2 to impair antibody-antigen association allowing variants to escape. Lacking 452/490 substitutions, the Omicron variant is sensitive to this class of antibodies. Our results provide new insights into SARS-CoV-2 variant genesis and immune evasion.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL